Experimental Demonstration of Printed Graphene Nano-flakes Enabled Flexible and Conformable Wideband Radar Absorbers

نویسندگان

  • Xianjun Huang
  • Kewen Pan
  • Zhirun Hu
چکیده

In this work, we have designed, fabricated and experimentally characterized a printed graphene nano-flakes enabled flexible and conformable wideband radar absorber. The absorber covers both X (8-12 GHz) and Ku (12-18 GHz) bands and is printed on flexible substrate using graphene nano-flakes conductive ink through stencil printing method. The measured results show that an effective absorption (above 90%) bandwidth spans from 10.4 GHz to 19.7 GHz, namely a 62% fraction bandwidth, with only 2 mm thickness. The flexibility of the printed graphene nano-flakes enables the absorber conformably bending and attaching to a metal cylinder. The radar cross section (RCS) of the cylinder with and without absorber attachment has been compared and excellent absorption has been obtained. Only 3.6% bandwidth reduction has been observed comparing to that of un-bended absorber. This work has demonstrated unambiguously that printed graphene can provide flexible and conformable wideband radar absorption, which extends the graphene's application to practical RCS reductions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wideband-Switchable Metamaterial Absorber Using Injected Liquid Metal

Metamaterial absorbers can provide good solutions for radar-cross-section (RCS) reduction. In spite of their attractive features of thinness, lightness, and low cost, resonant metamaterial absorbers have a drawback of narrow bandwidth. For practical radar applications, wideband absorbers are necessary. In this paper, we propose a wideband-switchable metamaterial absorber using liquid metal. In ...

متن کامل

Biocompatible, large-format, inkjet printed heterostructure MoS2-graphene photodetectors on conformable substrates

An inkjet printed, biocompatible, heterostructure photodetector is described that was constructed using inks of photo-active molybdenum disulfide (MoS2) and electrically conducting graphene which facilitated charge collection of the photocarriers. The importance of such devices stems from their potential utility in age-related-macular degeneration, which is a condition where the photosensitive ...

متن کامل

Flexible Radar Absorbing Nanocomposites Based on Co-ferrite/Nano Carbon/polymeric epoxy resin

In this research work cobalt-ferrite (CoFe2O4) nanoparticles were synthesized by a simple, general sol-gel auto-combustion method. For this study, electromagnetic (EM) wave absorbing coatings with different weight fractions of nano-carbon and CoFe2O4 (which, arises from both dielectric and magnetic contributions) and polymeric epoxy resin were prepared and their characteristics were fully inves...

متن کامل

Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate

Epidermal electronic systems (EESs) are skin-like electronic systems, which can be used to measure several physiological parameters from the skin. This paper presents materials and a simple, straightforward fabrication process for skin-conformable inkjet-printed temperature sensors. Epidermal temperature sensors are already presented in some studies, but they are mainly fabricated using traditi...

متن کامل

Design and Implementation of a Compact Super-Wideband Printed Antipodal Antenna Using Fractal Elements

A compact printed fractal antipodal bow-tie antenna is designed and implemented to simultaneously cover the operations in the C, X, and Ku-bands. It is demonstrated that by addition of small fractal elements at the sides of hexagonal arms of the bow-tie, a wide operating frequency range of 3.3 to 19.1 GHz can be covered while antenna size is only 30×34×1.2 mm3. In order to match the antenna to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016